Integrate scRNA-seq datasets#
scRNA-seq data integration is the process of analyzing data from several scRNA sequencing experiments to uncover common or distinct biological insights and patterns.
Here, weβll demonstrate how to fetch two scRNA-seq datasets by registered metadata such as cell types to finally integrate them.
Setup#
!lamin load test-scrna
Show code cell output
π‘ found cached instance metadata: /home/runner/.lamin/instance--testuser1--test-scrna.env
π‘ loaded instance: testuser1/test-scrna
import lamindb as ln
import lnschema_bionty as lb
import anndata as ad
π‘ loaded instance: testuser1/test-scrna (lamindb 0.54.2)
ln.track()
π‘ notebook imports: anndata==0.9.2 lamindb==0.54.2 lnschema_bionty==0.31.2
β record with similar name exist! did you mean to load it?
id | __ratio__ | |
---|---|---|
name | ||
scRNA-seq | Nv48yAceNSh8z8 | 90.0 |
π‘ Transform(id='agayZTonayqAz8', name='Integrate scRNA-seq datasets', short_name='scrna2', version='0', type=notebook, updated_at=2023-09-26 15:22:44, created_by_id='DzTjkKse')
π‘ Run(id='3PWYUNPHu3mR1SiDNzB6', run_at=2023-09-26 15:22:44, transform_id='agayZTonayqAz8', created_by_id='DzTjkKse')
Access
#
Query files by provenance metadata#
users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).search("scrna")
id | __ratio__ | |
---|---|---|
name | ||
Integrate scRNA-seq datasets | agayZTonayqAz8 | 90.0 |
scRNA-seq | Nv48yAceNSh8z8 | 90.0 |
transform = ln.Transform.filter(id="Nv48yAceNSh8z8").one()
ln.File.filter(transform=transform).df()
storage_id | key | suffix | accessor | description | version | size | hash | hash_type | transform_id | run_id | initial_version_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
mRiMeuE6kiGVZd17JYY5 | 5VDhxnQV | None | .h5ad | AnnData | Conde22 | None | 28049505 | WEFcMZxJNmMiUOFrcSTaig | md5 | Nv48yAceNSh8z8 | R6VHyzAPZWE010J0EfCw | None | 2023-09-26 15:22:16 | DzTjkKse |
JbGzRmdZ1qkqC1uIhRFd | 5VDhxnQV | None | .h5ad | AnnData | 10x reference pbmc68k | None | 660792 | a2V0IgOjMRHsCeZH169UOQ | md5 | Nv48yAceNSh8z8 | R6VHyzAPZWE010J0EfCw | None | 2023-09-26 15:22:39 | DzTjkKse |
Query files based on biological metadata#
assays = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
cell_types = lb.CellType.lookup()
query = ln.File.filter(
experimental_factors=assays.single_cell_rna_sequencing,
species=species.human,
cell_types=cell_types.gamma_delta_t_cell,
)
query.df()
storage_id | key | suffix | accessor | description | version | size | hash | hash_type | transform_id | run_id | initial_version_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
JbGzRmdZ1qkqC1uIhRFd | 5VDhxnQV | None | .h5ad | AnnData | 10x reference pbmc68k | None | 660792 | a2V0IgOjMRHsCeZH169UOQ | md5 | Nv48yAceNSh8z8 | R6VHyzAPZWE010J0EfCw | None | 2023-09-26 15:22:39 | DzTjkKse |
mRiMeuE6kiGVZd17JYY5 | 5VDhxnQV | None | .h5ad | AnnData | Conde22 | None | 28049505 | WEFcMZxJNmMiUOFrcSTaig | md5 | Nv48yAceNSh8z8 | R6VHyzAPZWE010J0EfCw | None | 2023-09-26 15:22:16 | DzTjkKse |
Transform
#
Compare gene sets#
Get file objects:
query = ln.File.filter()
file1, file2 = query.list()
file1.describe()
File(id='mRiMeuE6kiGVZd17JYY5', suffix='.h5ad', accessor='AnnData', description='Conde22', size=28049505, hash='WEFcMZxJNmMiUOFrcSTaig', hash_type='md5', updated_at=2023-09-26 15:22:16)
Provenance:
ποΈ storage: Storage(id='5VDhxnQV', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-09-26 15:21:41, created_by_id='DzTjkKse')
π transform: Transform(id='Nv48yAceNSh8z8', name='scRNA-seq', short_name='scrna', version='0', type='notebook', updated_at=2023-09-26 15:22:39, created_by_id='DzTjkKse')
π£ run: Run(id='R6VHyzAPZWE010J0EfCw', run_at=2023-09-26 15:21:43, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
π€ created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-26 15:21:41)
Features:
var: FeatureSet(id='uvZOKkBmvkqR3z9azMvj', n=36503, type='number', registry='bionty.Gene', hash='dnRexHCtxtmOU81_EpoJ', updated_at=2023-09-26 15:22:12, modality_id='8f5ws6Em', created_by_id='DzTjkKse')
'FUT2', 'ZNF493', 'None', 'ESRRG', 'OR8A1', 'TMSB15B-AS1', 'ARHGEF3', 'None', 'NBR2', 'L3HYPDH', ...
obs: FeatureSet(id='4gQLEeDIAYILFQMka6yJ', n=4, registry='core.Feature', hash='KViikKFECoDQO9CL-NyN', updated_at=2023-09-26 15:22:16, modality_id='AUT3hjtO', created_by_id='DzTjkKse')
π assay (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 5' v2', '10x 5' v1', '10x 3' v3'
π donor (12, core.ULabel): 'A52', 'D496', 'A35', '621B', '637C', 'D503', '640C', '582C', 'A37', 'A29', ...
π cell_type (32, bionty.CellType): 'mucosal invariant T cell', 'CD8-positive, alpha-beta memory T cell', 'mast cell', 'progenitor cell', 'group 3 innate lymphoid cell', 'classical monocyte', 'lymphocyte', 'conventional dendritic cell', 'naive B cell', 'effector memory CD8-positive, alpha-beta T cell, terminally differentiated', ...
π tissue (17, bionty.Tissue): 'blood', 'jejunal epithelium', 'thoracic lymph node', 'sigmoid colon', 'thymus', 'duodenum', 'caecum', 'lamina propria', 'liver', 'ileum', ...
Labels:
π·οΈ species (1, bionty.Species): 'human'
π·οΈ tissues (17, bionty.Tissue): 'blood', 'jejunal epithelium', 'thoracic lymph node', 'sigmoid colon', 'thymus', 'duodenum', 'caecum', 'lamina propria', 'liver', 'ileum', ...
π·οΈ cell_types (32, bionty.CellType): 'mucosal invariant T cell', 'CD8-positive, alpha-beta memory T cell', 'mast cell', 'progenitor cell', 'group 3 innate lymphoid cell', 'classical monocyte', 'lymphocyte', 'conventional dendritic cell', 'naive B cell', 'effector memory CD8-positive, alpha-beta T cell, terminally differentiated', ...
π·οΈ experimental_factors (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 5' v2', '10x 5' v1', '10x 3' v3'
π·οΈ ulabels (12, core.ULabel): 'A52', 'D496', 'A35', '621B', '637C', 'D503', '640C', '582C', 'A37', 'A29', ...
file1.view_flow()
file2.describe()
File(id='JbGzRmdZ1qkqC1uIhRFd', suffix='.h5ad', accessor='AnnData', description='10x reference pbmc68k', size=660792, hash='a2V0IgOjMRHsCeZH169UOQ', hash_type='md5', updated_at=2023-09-26 15:22:39)
Provenance:
ποΈ storage: Storage(id='5VDhxnQV', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-09-26 15:21:41, created_by_id='DzTjkKse')
π transform: Transform(id='Nv48yAceNSh8z8', name='scRNA-seq', short_name='scrna', version='0', type='notebook', updated_at=2023-09-26 15:22:39, created_by_id='DzTjkKse')
π£ run: Run(id='R6VHyzAPZWE010J0EfCw', run_at=2023-09-26 15:21:43, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
π€ created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-26 15:21:41)
Features:
var: FeatureSet(id='MQPU18dOZrpTw3zImorV', n=754, type='number', registry='bionty.Gene', hash='WMDxN7253SdzGwmznV5d', updated_at=2023-09-26 15:22:39, modality_id='8f5ws6Em', created_by_id='DzTjkKse')
'FGR', 'APTR', 'TPR', 'DNAJB1', 'FCN1', 'SELENOS', 'ANXA1', 'EBPL', 'JCHAIN', 'PRSS57', ...
obs: FeatureSet(id='1Ee7GMdVnNaWFJWWFOuE', n=1, registry='core.Feature', hash='U42Q4GyIP0fFVXaGUk8v', updated_at=2023-09-26 15:22:39, modality_id='AUT3hjtO', created_by_id='DzTjkKse')
π cell_type (9, bionty.CellType): 'gamma-delta T cell', 'CD4-positive, alpha-beta T cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'B cell, CD19-positive', 'cytotoxic T cell', 'monocyte', 'dendritic cell', 'CD24-positive, CD4 single-positive thymocyte', 'CD16-positive, CD56-dim natural killer cell, human'
external: FeatureSet(id='l1HNo9eWNzNKTcaxRBDR', n=2, registry='core.Feature', hash='yHmwwnoFJDU0_1t7TLmH', updated_at=2023-09-26 15:22:39, modality_id='AUT3hjtO', created_by_id='DzTjkKse')
π species (1, bionty.Species): 'human'
π assay (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
Labels:
π·οΈ species (1, bionty.Species): 'human'
π·οΈ cell_types (9, bionty.CellType): 'gamma-delta T cell', 'CD4-positive, alpha-beta T cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'B cell, CD19-positive', 'cytotoxic T cell', 'monocyte', 'dendritic cell', 'CD24-positive, CD4 single-positive thymocyte', 'CD16-positive, CD56-dim natural killer cell, human'
π·οΈ experimental_factors (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
file2.view_flow()
Load files into memory:
file1_adata = file1.load()
file2_adata = file2.load()
Here we compute shared genes without loading files:
file1_genes = file1.features["var"]
file2_genes = file2.features["var"]
shared_genes = file1_genes & file2_genes
len(shared_genes)
749
shared_genes.list("symbol")[:10]
['NDUFAF3',
'CD82',
'TEX264',
'ARID4B',
'F12',
'CCDC167',
'POLR1H',
'EXOG',
'LMAN2',
'GNG7']
Compare cell types#
file1_celltypes = file1.cell_types.all()
file2_celltypes = file2.cell_types.all()
shared_celltypes = file1_celltypes & file2_celltypes
shared_celltypes_names = shared_celltypes.list("name")
shared_celltypes_names
['CD16-positive, CD56-dim natural killer cell, human', 'gamma-delta T cell']
We can now subset the two datasets by shared cell types:
file1_adata_subset = file1_adata[
file1_adata.obs["cell_type"].isin(shared_celltypes_names)
]
file2_adata_subset = file2_adata[
file2_adata.obs["cell_type"].isin(shared_celltypes_names)
]
Concatenate subsetted datasets:
adata_concat = ad.concat(
[file1_adata_subset, file2_adata_subset],
label="file",
keys=[file1.description, file2.description],
)
adata_concat
AnnData object with n_obs Γ n_vars = 187 Γ 749
obs: 'cell_type', 'file'
obsm: 'X_umap'
adata_concat.obs.value_counts()
cell_type file
CD16-positive, CD56-dim natural killer cell, human Conde22 114
gamma-delta T cell Conde22 66
10x reference pbmc68k 4
CD16-positive, CD56-dim natural killer cell, human 10x reference pbmc68k 3
dtype: int64
# clean up test instance
!lamin delete --force test-scrna
!rm -r ./test-scrna
Show code cell output
π‘ deleting instance testuser1/test-scrna
β
deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-scrna.env
β
instance cache deleted
β
deleted '.lndb' sqlite file
β consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna